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Computation of the viscosity of a liquid from time averages of stress fluctuations
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The shear viscosity can be calculated from the standard deviation of an equilibrium ensemble of time
averages of the shear stress computed along finite duration phase space trajectory segments. The mean square
of the segment averages of the shear stress is proportional to the shear viscosity and inversely proportional to
the duration of the trajectory segments and the number of particles. We test the fluctuation relation for the shear
viscosity and show that it provides a simple but viable means of computing the zero strain rate shear viscosity.
We decompose the shear viscosity computed using this fluctuation method, into its ‘‘kinetic’’ and ‘‘configu-
rational’’ components. We also calculate the relevant relaxation times. We compare the computed results with
standard nonequilibrium molecular dynamics simulations. Finally we compute the bulk viscosity using an
analogous fluctuation method.
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I. INTRODUCTION

According to Green and Kubo@1#, linear transport coeffi-
cients can be expressed as integrals over the appropriate
correlation functions. The time correlation functions ha
been computed in molecular dynamics~MD! simulations and
transport coefficients were obtained by the Green-Ku
method for about the last 30 years@2–6#. Without explicitly
calculating the time correlation function, the integral r
quired for the transport coefficient can be computed from
analysis of time-segment averages of the relevant fluctua
quantity. Here we demonstrate that the shear viscosity
fluid can be inferred from ensemble averages of the m
square of time averages of the stress fluctuations. For a
ticular state point of a Lennard-Jones type model fluid,
‘‘kinetic’’ and ‘‘potential’’ ~‘‘configurational’’! contribu-
tions, as well as the ‘‘total’’ shear viscosity are calculate
The numerical values agree, within statistical uncertaint
with the corresponding results, obtained in the small sh
rate limit of nonequilibrium molecular dynamics~NEMD!
simulations. We also present values for correlation or rel
ation time coefficients, obtained by dividing the viscositi
by the relevant~high frequency! elastic moduli, which are
calculated in the simulation. We use the present method
to determine the bulk viscosity.

II. BASICS OF THE METHOD

A. Pressure and stress tensor

Consider a system composed ofN spherical particles with
massm and position vectorsr i , i 51, . . . ,N in a volumeV.
The number density isn5N/V. In the molecular dynamics
simulations, periodic boundary conditions and the ‘‘min
mum image convention’’ are used in order to avoid bound
layer effects@5,6#.

*Corresponding author. Electronic address: S.Hess@physi
berlin.de
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In a streaming fluid, the stationary rheological propert
such as the~non-Newtonian! viscosity and the normal pres
sure differences are obtained from long time averages of
Cartesian components of the stress tensorsmn52pmn or of
the pressure tensorpmn which is the sum of kinetic und po
tential contributions:pmn5pmn

kin1pmn
pot ,

pmn
kin5V21(

i
mcm

i cn
i , pmn

pot5V21
1

2 (
i j

r m
i j Fn

i j . ~1!

Hereci is the peculiar velocity of particlei, i.e., its velocity
relative to the flow velocityv(r i), r i j 5r i2r j is the relative
position vector of particlesi , j and Fi j is the force acting
between them. The Greek subscriptsm,n, which assume the
values 1, 2, 3, stand for Cartesian components associ
with the x,y,z directions.

B. Stress fluctuation formula for the viscosity

In an equilibrium situation where one hasv50, the shear
stress, i.e., the off-diagonol components of the stress ten
e.g., s52p12 and the normal stress differences, e.g.,p22
2p11 fluctuate about zero and their long time averages v
ish. The mean square average of these fluctuating quan
depends on the averaging timetav @7#.

More specifically, the definition of a time-segment ave
age

s̄~ tav!5tav
21E

0

tav
s~ t !dt ~2!

is introduced. The time dependence ofs(t)52p12(t) stems
from the time dependence of the positions and momenta
the particles, cf. Eq.~1!. It is understood that the integratio
limits 0 andtav can be replaced byt0 and t01tav provided
that these times are also within the time span for which
phase space trajectory is available. The mean square ave
is given by
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^s̄~ tav!2&5tav
22E

0

tav
dtE

0

tav
dt8^s~ t !s~ t8!&

52tav
21E

0

tav
dt^s~ t !s~0!&. ~3!

The angular bracketŝ•••& indicate an ensemble averg

^s̄(tav)&50 has been assumed. The second equality of
~3! applies to a stationary situation where^s(t)s(t8)& de-
pends on the time differencet2t8 only. The factor 2 stems
from replacing an integral from2tav to tav by two times the
integral from 0 totav , based upon the assumption that t
equilibrium fluctuations cannot distinguish between ‘‘pas
and ‘‘future,’’ i.e., ^s(t)s(0)&5^s(2t)s(0)&. A charcter-
istic stress relaxation timet is defined by*0

`dt^s(t)s(0)&
5t^s(0)s(0)&. Provided that the averaging timetav is large
compared with the relaxation timet, the mean square stres
fluctuation is inversely proportional to the averaging tim
Compared with the mean square fluctuation of the insta
neous quantitŷ s(0)2&, the mean square fluctuation of th
correponding time averaged quantity is reduced by the fa
2ttav

21 @7#.
In the same limit,tav@t, the Green-Kubo formula for the

shear viscosityh5(N/nkBT)*0
`dt^s(t)s(0)& can be used

to rewrite Eq.~3! as an expression applicable for the comp
tation of the viscosity from the mean square of the fluct
tions of the time averaged shear stress:

h5tav~2nkBT!21N^s̄~ tav!2&. ~4!

This is the key formula which is used here to compute v
cosity coefficients. Recently, it has been derived from a m
general fluctuation theorem@8#.

As a side remark, it is mentioned that Eq.~4! can also be
looked upon as an ‘‘Einstein’’ relation for the computatio
of the ~total! viscosity, analogous to Einstein’s prescriptio
for the computation of the diffusion coefficient from th
mean square displacement. To see this, notice that the
pressure tensorpmn , for v50, is the time derivative of the
tensor V21qmn with qmn5( imrm

i cn
i . Thus one has

2tavVs̄(tav)5q12(tav)2q12(0)5Dq12(tav) and Eq.~4! is
equivalent toh5tav

21(2VkBT)21^Dq12(tav)2&. Problems as-
sociated with the application of Einstein-like expressions
the computation of transport coefficients are pointed ou
Ref. @9#. The method presented here is intermediate betw
the conventional Green-Kubo and Einstein methods. Eins
relations do not exist for the partial viscosity coefficients,
be discussed next, which are of interest in connection w
kinetic theory@10#.

C. Kinetic and potential contributions

As stated above, the stress is the sum of kinetic and
tential contributions. In molecular dynamics simulations,
contributionsskin(tav) and spot(tav) can be extracted sep
erately. The viscosity coefficientsh (kk),h (kp)5h (pk), and
h (pp) can be calculated in analogy to Eq.~4! with s̄(tav)2

replaced by @skin(tav)#2, skin(tav)spot(tav), and
01120
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@spot(tav)#2, respectively. It is understood that the quantiti
multiplied in the cross term pertain to the same time segm
of a phase space trajectory. The viscositieshkin and hpot

which can be computed in NEMD simulations by dividin
the kinetic and the potential parts of the shear stress by
imposed shear rate are, in the small shear rate limit, lin
with the partial viscosity coefficientsh (kk), etc., obtained via
the fluctuation formula, by

hkin5h (kk)1h (kp), hpot5h (pp)1h (kp). ~5!

The total viscosity is also given by

h5hkin1hpot5h (kk)12 h (kp)1h (pp). ~6!

Notice thath,h (kk), andh (pp) are positive, as inferred from
the stress fluctuation expressions for these quantities.
coefficienth (kp), on the other hand, can have either sign.
magnitude, however, is bounded according to (h (kp))2

,h (kk)h (pp), since positive entropy production requires t
total shear viscosityh to be positive. The kinetic contribu
tion to the viscosity dominates in dilute gases@11#. In dense
fluids ~liquids! the potential contribution is more importan

D. Shear modulus, relaxation times

In the fluid phase, the mean square average of the ins
taneous potential part of the shear stress is related to the
frequency shear modulusG by ^(spot(0))2&5N21nkBTG.
Incidentally, this expression can be derived from stand
thermodynamic fluctuation theory for a linear elastic mediu
with a shear modulusG. When applied to a fluid, where th
low frequency elastic modulus vanishes, one has to use
high frequency shear modulus, instead. This quantity, so
times referred to as ‘‘Maxwell shear modulus,’’ can also
computed by the Born-Green expression which is the av
age of a two-particle quantity, viz.

G5
1

15V K (
i , j

@r 22~r 4f8!8# i j L . ~7!

The prime denotes the derivative with respect tor. The low
frequency shear modulus is the difference between the B
Green and the fluctuation expressions given above. B
have equal magnitude for a system in the fluid~but not in the
solid! state@12#.

Division of the viscosityh (pp) by the shear modulusG
yields the ‘‘Maxwell’’ relaxation timet (pp). In connection
with the kinetic part,nkBT plays the role ofG, for the cross
term it is (nkBTG)1/2, thus

h (kk)5nkBTt (kk), h (kp)5~nkBTG!1/2t (kp), h (pp)5Gt (pp).
~8!

Next, the formulas given are tested for a simple mo
fluid. First, its verified that the mean square of the time a
eraged contributions to the shear stress are inversely pro
tional to the averaging time. Then the various viscosity a
relaxation time coeffiencts are calculated.
7-2
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COMPUTATION OF THE VISCOSITY OF A LIQUID . . . PHYSICAL REVIEW E64 011207
III. MOLECULAR DYNAMICS

A. The potential

For the test calculations, the short range attractive po
tial, referred to as the ‘‘SHRAT’’ potential,

fSHRAT~r !5~512/27!F0~12r /r 0!~322r /r 0!3, r<1.5r 0 ,
~9!

andfSHRAT(r )50 for r .1.5r 0, is used. The quantitiesF0
and r 0 set the characteristic energy and length scales.
intersection with the horizontal axis and the depth of
potential minimum, occurring atr 51.125r 0, are analogous
to that of the Lennard-Jones~LJ! potential. In units of
F0 /r 0, the force atr 5r 0 is 512/27'19. The corresponding
value for the LJ potential is 24. Here, the cutoff is rath
short ranged and smooth, such that not only the potential
also its first and second derivatives vanish at the cutoff
tance. Notice that this potential is finite atr 50, viz.
fSHRAT(0)5512F0 . For temperatures less than 10F0 /kB ,
this is of no practical concern since the Boltzmann fac
exp(2F0 /kBT) governing the fraction of particles which ca
reach this distance is smaller than 6310223. In numerical
calculations and in the graphs displayed here, all phys
quantities are expressed in the standard LJ units of,
lengths and energies are given in units ofr 0 andF0. Follow-
ing common practice the dimensionless variables are den
by the same symbols as the corresponding physical qu
ties when no danger of confusion exists. In dimensionl
notation, the SHRAT potentials readsfSHRAT(r )
5(512/27)(12r )(322r )3, r<3/2, whereasfSHRAT(r )50
for r .3/2. Similarly, the number densityn5N/V, whereN
and V are the number of particles and the volume of t
system, and the temperatureT are expressed in units o
nre f5r 0

23 and Tre f5F0 /kB , respectively. The unit for the
pressure ispre f5F0r 0

23. The reference value for the time
t re f5r 0 /v re f wherev re f5(F0 /m)1/2 is a reference velocity
The reference viscosity ish re f5pre ft re f .

Thermophysical properties of this model system in
gaseous, liquid, and solid state have recently been calcu
@13#. Here results are presented for a state point with
number densityn50.75nre f and the temperatureT5Tre f
which corresponds to a compressed fluid, somewhat ab
the critical temperature~which is at 0.8Tre f), with a density
of more than twice the critical density~about 0.32nre f) but
well below that one where a fcc crystalline solid exists, u
der a considerably higher pressure, at the same tempera

B. Simulation details

In the simulations, the equations of motion ofN54383

52048 particles were integrated with the velocity Verlet
gorithm with the time stepdt/t re f50.004. A cubic simula-
tion box with volumeV and periodic boundary condition
were used. Initially, the particles were placed on fcc latt
sites and they had random velocities with a mean squ
corresponding to the desired temperatureT/Tre f51.0. For
this temperature, kept constant by rescaling the magnitud
the particle velocities which corresponds to the Gauss
constraint of constant kinetic energy, and the constant n
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ber densityn/nre f50.75, the crystal melts and a fluid state
approached quickly. The system was well equilibrated
running it for 100 LJ time unitst re f ~corresponding to 25 000
time steps!.

Then the thermostat was turned off and the adiab
~isoenergetic! simulation was run for 960t re f , with the quan-
tities of interest computed and recorded in 1920 time int
vals of length 0.5t re f . Within each time intervall, data wer
actually extracted at every 25th of the 125 time steps. Av
aged over the full runtime, the values for the potential ene
per particle, the pressure and the~Born-Green! shear modu-
lus are epot/F0522.7760.01, p/pre f51.6360.04, and
G/pre f515.360.1. The average temperature, both compu
by the ‘‘kinetic’’ and the ‘‘configurational’’ expressions
@14#, is T/Tre f50.9960.01.

C. Fluctuating shear stress

The fluctuating shear stress, preaveraged overtav
50.5t re f , as recorded over the first 240 time units, is d
played in Fig. 1~gray curve!. For comparison, the sam
quantity, but now preaveraged over tenfold longer time

FIG. 2. The ensemble average of the square of the fluctua
shear stress~in units of pre f) as function of the inverse averagin
time ~in units of t re f). The black, large and small gray dots mark t
results for the total shear stress, its potential, and its kinetic pa
respectively.

FIG. 1. The fluctuating shear stress~in units ofpre f! as function
of the time~in units of t re f), pre-averaged over intervals of lengt
0.5t re f ~gray curve! and 5.0t re f ~black curve!.
7-3
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SIEGFRIED HESS AND DENIS J. EVANS PHYSICAL REVIEW E64 011207
tervals is shown by the thick black curve. Clearly, and
expected, the amplitude of the fluctuations are reduced w
tav is larger.

In order to analyze the dependence of the mean sq
fluctuations of the various contributions to the shear stre
the available data are further averaged in blocks of len
2,3,4,5,6,8,10,12,15,16,20,24,32,40~divisors of 1920! corre-
sponding to time segments with

tav /t re f51.0,1.5,2.0, . . . ,16.0,20.0.

The ensemble average needed to evaluate the mean s
fluctuation of the shear stress is provided by an average
the various blocks. Notice that we have 960 of them
length tav /t re f51.0 but only 48 of lengthtav /t re f520.0.

In Fig. 2, the~logarithm of the! ensemble averages of th
mean square of the time average of the shear stress flu
tions, multiplied by the number of particlesN52048, are
displayed as functions of the~logarithm of the! inverse av-
eraging timetav . The black dots stand for the total she
stress, the large and small gray dots for the potential and
kinetic contributions, respectively. The cross term ‘‘kin-po
was also computed. It is positive and still smaller than
‘‘kin-kin’’ part. For clarity of the presentation, it is no
shown in the graph. The straight lines~with slope21! indi-
cate that the mean square fluctuations, fortav /t re f>1.0 in-
deed decrease inversely proportional to the averaging
tav , cf. Eq.~3!. This proves that the relevant relaxation tim
are definitely shorter thant re f . Hence the expression~4! can
be applied to the computation of the viscosity coefficient

FIG. 3. The shear viscosity~in units of h re f5pre ft re f) as func-
tion of the inverse averaging time~in units of t re f). The black,
large, and small gray dots mark the results for the total viscosity
potential and its kinetic contributions, respectively.
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D. Viscosity coefficients

Shear viscosity coefficients, computed from the me
square fluctuations according to Eq.~4! are displayed in Fig.
3 as functions of the inverse averaging timetav ~double loga-
rithmic plot!. The black dots mark the total viscosityh, the
large and small gray dots stand forh (pp) andh (kk). The cross
term h (kp) has also been computed, but is not shown in
graph for the sake of clarity.

The values for the various viscosity coefficients are giv
in Table I. The averages and deviations have been de
mined from the relevant time averages withtav /t re f ranging
from 1.0 to 20.0. Also listed are, where available, the cor
sponding values inferred from an NEMD simulation@13#.
There the fluid showed an approximate newtonian behav
i.e., the viscosities were practically independent of the sh
rate for shear rates less than 1/t re f . Data were accumulated
and used for determination of the viscosities for shear ra
between 1022t re f

21 and 1.0t re f
21 . The viscosities obtained by

both methods agree well, within the computational unc
tainties. Notice that the coefficients which are missing in
NEMD row cannot, in principle, be computed by th
method.

Ensemble averages of time averages of the shear s
could also be evaluated for shorter averaging times, com
rable to the relaxation timet. A comparison of the resulting
deviations of the points from the straight lines in Fig. 3, w
a NEMD calculation of the frequency dependence of the v
cosity @16#, for frequencies comparable tot21, is of interest.
This, however, is outside the scope of the present study

E. Relaxation time coefficients

The viscosity relaxation timet, obtained by dividing the
shear viscosityh by nkBT1G, as well as the other relax
ation time coefficients defined above, are listed in Table
Except for the cross correlation timet (kp), which is smaller
than the others by about one order of magnitude, the re
ation time coefficients have rather similar values, of ab
0.1t re f .

The relaxation timet (pp) is of particular interest for the
kinetic theory, termed ‘‘Stokes-Maxwell’’ approach, used
study the shear-induced distortions of the structure of a fl
as revealed in the pair-correlation function or the static str
ture factor@15#.

ts

TABLE II. The relaxation time coefficients, in units oft re f .

t t (kk) t (kp) t (pp)

0.09860.006 0.09360.013 0.00960.003 0.09560.005
the
TABLE I. The viscosity coefficients, in units ofh re f , obtained by the present method based on
analysis of stress fluctuations~labeled ‘‘flct’’ !, and by NEMD simulations.

h h (kk) h (kp) h (pp) hkin hpot

flct 1.5860.08 0.0760.01 0.0360.01 1.4560.08 0.1060.02 1.4860.09
NEMD 1.6160.08 0.1260.01 1.5060.07
7-4
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F. Bulk viscosity

The bulk viscosityhV has been treated by the sam
method. Here the deviations of the scalar pressurep ~one-
third of the trace of the pressure tensor! from its average, viz.
dp(tav)5 p̄(tav)2^ p̄(tav)&, with p̄(tav)5tav

21*0
tavp(t)dt, is

used in the viscosity expression analogous to Eq.~4!, instead
of the shear stress. The~preliminary! results arehV51.6
60.1, for the total bulk viscosity andhV

kk50.01260.001,
hV

kp520.0560.05, hV
pp51.760.1 for the partial coeffi-

cients. The small value found for the ‘‘kk’’ part may not be
surprising in view of the fact that this coefficient is exac
zero for a dilute gas of particles without internal degrees
freedom. The cross term is also small, but negative. The t
bulk viscosity happens to be nearly equal to the shear
cosity. The relaxation timetV

(pp) , seems to be somewha
larger ~by a factor of'1.5) than the shear relaxation tim
t (pp). These results, however, should be considered as
liminary and a comparison with corresponding NEMD r
sults is needed. For the Lennard-Jones liquid close to
triple point, the bulk viscosity has been computed previou
@17# and found to be smaller than the shear viscosity b
factor of about 0.5. The experimentally determined ratio
tween the bulk and the shear viscosity of liquid argon var
from about 0.6, in the vicinity of the triple point, to over 2,
smaller densities and higher temperatures@18#. So the ratio
of about 1 for the viscosities found at the state point stud
here is quite plausible. Furthermore, it deserves mention
that the occurrence of a negative ‘‘cross’’ contributionhV

kp to
the bulk viscosity has been predicted@17# for soft spheres.
The ratios between the various contributions found he
however, differ from the soft spheres valueshV

kk :2hV
kp :hV

pp

5(1/4)n2:2n:1 for an interaction potential proportional t
r 2n @17#.

IV. CONCLUDING REMARKS

In this paper, it has been demonstrated that the expres
~4! involving an ensemble average of the square of tim
segment averages of the fluctuating shear stress can be
efficiently to compute the shear viscosity and associated
ys

-
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laxation time coefficients of a fluid. Preliminary results we
also given for the bulk viscosity. Generalizations to oth
transport coefficients, in particular to heat conductivity,
well as to complex fluids, e.g., liquid crystals@18–21# and
polymeric liquids@22#, as well as to fluids in restricted ge
ometries@23,24#, is desirable and feasible. In anisotropic fl
ids, where preferential directions exist, be it by a sponta
ous ordering as in liquid crystals or imposed by exter
fields or by a wall, the fluctuations of the various Cartes
components of the shear stress will reflect the broken sp
symmetry of the fluid. Then a larger set of coefficients
needed to characterize the anisotropy of the viscosity@21#.

A remark on computational demands is in order. He
data were analyzed from a similation run over about 14

relaxation timest. A run time of 103t is the minimal value
needed for the determination of a transport coefficient. T
means the computation becomes more demanding for
tems~complex fluids, e.g., composed of reptating polyme!
with relaxtion times which are several orders of magnitu
larger than that one encountered here. On the other hand
ensemble average can also be obtained from shorter~say
102t) parallel runs starting from statistically independent in
tial states. A computation of the viscosity of systems with
relaxation time up to 103t re f , which requires a total of a few
hundred million MD time steps, seems to be feasible by
present method.
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